> STATMTICS
> SECTION II
> Prid
> Queslon 15
> Spend about 65 mimita on till part of the exam.
> Perent of Seaton 11 rado- 75

 velebilky la the controlgupup.

1. (a) This is the average (typical) distance of each strawberries' discoloration rating from the mean.

E - interpreted correctly and in context
P - correct defn - no context
OR commented the control group appeared normal and applied the empirical rule

I-empirical rule without saying normal or wrote the formula for standard deviation

1. (b) The preservative seems to lower the amount of discoloration (is effective). The median is 6 for this group vs. 7 for the control group. Also, the ratings are more symmetric around 5 (mound-shaped), where the control group is more skewed left with most of it's ratings at 6 or higher.

The preservative does appear to have been effective in lowering the amount of discoloration in strawberries. The discoloration ratings for strawberries that received the preservative are clearly centered at a value that is lower than the center of the rating distribution for the control group.

By looking at the dotplots it can be seen that the preservative was somewhat effective because it yielded a greater number of low scores, indicating less discoloration overall (15 strawberries with the treatment had discoloration scores of 5 or less, whereas only 6 in the control group had discoloration scores of 5 or less.)

E-indicates that the preservative appears to be effective and explicitly links this decision to comparison of a characteristic of relative standing from the dotplots for the two groups.
P - says it appears to be effective because the ratings appear lower for the treatment group, but does not link... or correctly compares one or more characteristics but never states that it was effective at lowering discoloration.

I-stays it is not effective because the centers are roughly t he same, or says it's effective with incorrect or no justification.

1. (c) Yes, based on this confidence interval, there appears to be a difference in the population mean discoloration ratings. The C.I. does not contain 0 , which would indicate no difference. you are 95\% confident that the mean difference in discoloration ratings between the treatment and control groups is between . 16 and 2.72, meaning the preservative was between .16 and 2.72 lower than the control group.
E - indicates 0 is not included in the C.I. so there is a difference in population mean and states the conclusion in the context of the experiment.
P - indicates that 0 is not included so there is a difference in pop. means but does not state in context, or correctly interprets 95% conf. in context and indicates there is diff in pop. means without indicating 0 is not included.

I - concludes it's not effective or says that no conclusion can be made or states a conclusion that refers to sample means instead of pop. means.

4 EEE

3 EEP
2 EEI
EPP
PPP
1 EPI
Ell
PPI
(any order)

 theo two virabion to use a a biockis velabiof

 follented weuld ba now limely?

0
 Jutily your acruer.

 Jusify your acaner.
2. (a) A control gropu gives the researchers a comparison group to be used to evaluate the effectiveness of the treatments. It allows them to compare the changes in hip and joint health in the dogs receiving the two drugs vs. dogs receiving no treatment.

E - the advantage of using a comparison group is described in the context of this study
P - the advantage of using a control group is described, but not in context

I - says that control groups should always be used but gives no further explanation or an incorrect explanation.

2 (b) Roll a die for each dog:
1, 2 assign to gluc
3, 4 assign to chond
5, 6 control group
continue until all dogs have been assigned a group.

Each dog will be assigned a number 001-300. Using a RNT, read 3 digit numbers ignoring repeats and numbers not assigned. The 1st 100 number selected will receive gluc, the next 100 chon., and the last 100 will be the control group.
****DO NOT 'dump' the rest when one group is full!

E - randomization used correctly and the method can be implemented after reading the student response (so that two knowledgeable statistics users could use the same method.)

P - randomization is used, but the method could not be implemented after reading the student response.

I - randomization not used in a planned way OR the solution does not yield a completely randomized design.
2. (c) The key question is which variable has the strongest association with joint and hip health. The goal of blocking is to create groups of homogenous dogs. It is reasonable to assume that most clinics will see all kinds and breeds of dogs so there is no reason to suspect that joint and hip health will be strongly associated with clinic. On the other hand, different breeds of dogs tend to come in different sizes. This size of a dog is associated with joint and hip health so it would be better to block by breed.

Breed of dog is more likely going to affect joint and hip health than the clinic, so I would block by breed.

You could look at past studies/clients to clinics and see if there is a bigger difference between clinics or breed of dog in hip and joint health. Block the one that has the biggest difference.

E - argues var. with the stronger relationship to joint and hip health (response var.) should be used as the blocking var. OR states that the var. with the larger anticipated var. in the response measure should be used. A rationale is required, but a var. does not have to be selected.

P - indicated the purpose of blocking is to create homogeneous exp units but makes an error in application OR does not acknowledge that there may be more variability in one than the other OR does not recognize that both var are associated with variation in the response.

I-does not exhibit an understanding of the purpose of blocking.

4 EEE

3 EEP

2 EEI
EPP
PPP
1 EPI
Ell
PPI
3. (a) The random sample of 15 fish is more likely to have a sample mean length greater than 10 inches. The sampling distribution of the sample mean is normal with mean 8 and standard deviation $/ \sqrt{n}$. Thus, both sampling distributions will be centered at 8 inches, but the one when $n=15$ will have more variability than the sampling distribution of the sample means when $\mathrm{n}=50$.

A random sample of 15 fish having a mean length that is greater than 10 inches is more likely. The standard deviation of the sampling distribution increases as the sample size decreases so greater deviation from the true population mean is more likely with a sample of 15 fish as opposed to 50 .

E-says 15 is more likely AND the justification is based on the variability in the sampling distributions.

P - says 15 - makes correct statements about the sampling dist. of the sample mean or the probabilities but does not specifically refer to the variability in these two sampl. dist. OR remearks that the sample mean approaches the pop. mean as the sample size increases. (Law of Large Numbers)

I - no or incorrect justification or chooses 50.
3. (b)

Stand. der. of samp.dist of sample mean is .3, means $\frac{5}{\sqrt{n}}=3$

E - Prob. correct and a reasonable sketch or calculation is shown.

P - incorrect but plausible calc. is shown. ex using OR switches 7.5 and 8 to get a z of 1.67.

I - answer provided with no justification or incorrect.
3. (c) Yes, because the sample size is 50 , which is large (<30). According to the CLT, the sampling distribution will be normal even for nonnormal populations with a large sample size.

E - yes because of the CLT (sampl. dist.) and large n .
P-yes, but weak justification - ex. mentioning CLT without reference to sample size, and mentioning sample size without reference to CLT.

$$
\begin{aligned}
& \text { Part a }-E=2 \text { pts, } P=1 \\
& b \text { and } c-E=1 p t P=1 / 2 \\
& 4=4 \text { pts } \\
& 3=3 \text { or } 31 / 2 \\
& 2=2 \text { or } 21 / 2 \\
& 1=1 \text { or } 11 / 2
\end{aligned}
$$

Spechera

this is not sign at the 10 level so I fail to reject H_{o}.
Therefore, there is not enough evid based on this sample to say there's a sign. diff. in the mean amt. of E. Coli detected by the 2 methods
answers OE. notebook

$$
\begin{aligned}
& \text { each part is correct or incorrect } \\
& \text { \#of parts correct. (no partial) }
\end{aligned}
$$

 yorr maner.

 laver

- random asian
- Control \rightarrow
- replication

SRS or

b) a) $510 \mathrm{pe}=1.080$ slope \Rightarrow predicted

$$
\begin{aligned}
& \text { - perceived dist, is predicted to } \\
& \text { ink. } 1.080 \text { ft. for each add }
\end{aligned}
$$ foot in actual dist.

If
objects 7
it makes sense to have a pred. perceived dist. of O.
answers OE.notebook

answers OE. notebook

P-value of .0683 , this is not sign. at the .05 level,

0
683

prob.
of

as extreme

STATLSTICS
SECTION II
Parl B
Quealon 6
Spend about 25 mimita on thla part of the exem.
Perent of Seaton 11 racho- 25

 noredena bed boftexe the oest nblect viowed themen.

$$
\text { Modol l: } \hat{y}=0.238+1.080 \times \text { (coturl ditmece) }
$$

 ura mocl

sT0P
 END OF EXAN

